To Work is to Think

Foundational Papers in Complexity Science pp. 17–46
DOI: 10.37911/9781947864528.02

To Work is to Think

Author: Susanne Still, University of Hawai’i

 

Excerpt

Léo Szilárd made important contributions to the foundations of statistical thermodynamics and the physics of information with work he completed in 1922. This appeared in print much later (Szilárd 1925, 1929), and was not translated into English until 1972 and 1964, respectively. The second paper (Szilárd 1929), reprinted in this chapter, provides a physical basis for quantifying information. This groundbreaking work was not immediately fully absorbed into the developing literature on information theory, cybernetics, and physics of computation; its recognition came with some delay. The paper has had a recent revival, recognized as the founding paper on information engines.

Bibliography

Bérut, A., A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, and E. Lutz. 2012. “Experimental Verification of Landauer’s Principle Linking Information and Thermodynamics.” Nature 483 (7388): 187–189. https://doi.org/10.1038/nature10872.

Brillouin, L. 1949. “Life, Thermodynamics, and Cybernetics.” American Scientist 37 (4): 554–568.

—. 1951. “Maxwell’s Demon Cannot Operate: Information and Entropy. I.” Journal of Applied Physics 22 (3): 334–337. https://doi.org/10.1063/1.1699951.

Cover, T. M. 1999. Elements of Information Theory. New York, NY: John Wiley & Sons.

Daimer, D., and S. Still. 2023a. “The Physical Observer in a Szilárd Engine with Uncertainty.” arXiv preprint arXiv:2309.10580, https://doi.org/10.48550/arXiv.2309.10580.

—. 2023b. “Thermodynamically Rational Decision Making under Uncertainty.” arXiv preprint arXiv:2309.10476, https://doi.org/10.48550/arXiv.2309.10476.

Gábor, D. 1961. “Light and Information.” In Progress in Optics, 1:109–153. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/S0079-6638(08)70609-7.

Hartley, R. V. L. 1928. “Transmission of Information.” Bell System Technical Journal 7 (3): 535–563. https://doi.org/10.1002/j.1538-7305.1928.tb01236.x.

Jordan, P. 1949. “On the Process of Measurement in Quantum Mechanics.” Philosophy of Science 16 (4): 269–278. https://doi.org/10.1086/287049.

Knott, C. G., ed. 1911. Life and Scientific Work of Peter Guthrie Tait. Includes Maxwell’s Letter to P. G. Tait, 11 December 1867. London, UK: Cambridge University Press.

Landauer, R. 1961. “Irreversibility and Heat Generation in the Computing Process.” IBM Journal of Research and Development 5 (3): 183–191. https://doi.org/10.1147/rd.53.0183.

Lanouette, W. 2013. Genius in the Shadows: A Biography of Leo Szilárd, the Man behind the Bomb. New York, NY: Skyhorse.

Maxwell, J. C. 1871. Theory of Heat. London, UK: Longmans, Green & Co.

Nyquist, H. 1924. “Certain Factors Affecting Telegraph Speed.” Transactions of the American Institute of Electrical Engineers 43:412–422. https://doi.org/10.1109/T-AIEE.1924.5060996.

Pyke, D., and J. Medawar. 2000. “The Pest from Budapest.” August 12, 2000, The Guardian, https://www.theguardian.com/books/2000/aug/12/politics.history.

Shannon, C. E. 1948. “A Mathematical Theory of Communication.” The Bell System Technical Journal 27 (3): 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

Still, S. 2014. “Lossy is Lazy.” In Proceedings of the Seventh Workshop on Information-Theoretic Methods in Science and Engineering, 17–21. Helsinki, Finland: University of Helsinki. http://hdl.handle.net/10138/153411.

—. 2020. “Thermodynamic Cost and Benefit of Memory.” Physical Review Letters 124 (5–7): 050601. https://doi.org/10.1103/PhysRevLett.124.050601.

Still, S., and D. Daimer. 2022. “Partially Observable Szilárd Engines.” New Journal of Physics 24 (7): 073031. https://doi.org/10.1088/1367-2630/ac6b30.

Szilárd, L. 1925. “Über die Ausdehnung der phänomenologischen Thermodynamik auf die Schwankungserscheinungen.” Zeitschrift für Physik 32 (1): 753–788. https://doi.org/10.1007/BF01331713.

—. 1929. “Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen.” Zeitschrift für Physik 53 (11-12): 840–856. https://doi.org/10.1007/BF01341281.

—. 1964. “On the Decrease of Entropy in a Thermodynamic System by the Intervention of Intelligent Beings.” Behavioral Science 9 (4): 301–310. https://doi.org/10.1002/bs.3830090402.

—. 1972. “On the Extension of Phenomenological Thermodynamics to Fluctuation Phenomena.” In Collected Works of Leo Szilárd, 70–102. Cambridge, MA: MIT Press.

The UC San Diego Collection of Leo Szilárd's papers. https://library.ucsd.edu/dc/object/bb3073224j/_1.pdf.

Toyabe, S., T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano. 2010. “Experimental Demonstration of Information-to-Energy Conversion and Validation of the Generalized Jarzynski Equality.” Nature Physics 6 (12): 988–992. https://doi.org/10.1038/nphys1821.

Tribus, M. 1961. “Information Theory as the Basis for Thermostatics and Thermodynamics.” Journal of Applied Mechanics 28 (1): 1–8. https://doi.org/10.1115/1.3640461.

von Neumann, J. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin, Germany: Springer-Verlag.

—. 1949. “Cybernetics or Control and Communication in the Animal and the Machine, by Norbert Wiener.” Physics Today 2 (5): 33–34. https://doi.org/10.1063/1.3066516.

—. 1955. Mathematical Foundations of Quantum Mechanics. Translated by R. T. Beyer. Princeton, NJ: Princeton University Press.

Wiener, N. 1948. Cybernetics: Or, Control and Communication in the Animal and the Machine. Cambridge, MA: MIT Press.

BACK TO Foundational Papers in Complexity Science